Inhibition of protein kinase CK2 closes the CFTR Cl channel, but has no effect on the cystic fibrosis mutant deltaF508-CFTR.

نویسندگان

  • Kate J Treharne
  • Zhe Xu
  • Jeng-Haur Chen
  • O Giles Best
  • Diane M Cassidy
  • Dieter C Gruenert
  • Péter Hegyi
  • Michael A Gray
  • David N Sheppard
  • Karl Kunzelmann
  • Anil Mehta
چکیده

BACKGROUND Deletion of phenylalanine-508 (DeltaF508) from the first nucleotide-binding domain (NBD1) in the wild-type cystic fibrosis (CF) transmembrane-conductance regulator (wtCFTR) causes CF. However, the mechanistic relationship between DeltaF508-CFTR and the diversity of CF disease is unexplained. The surface location of F508 on NBD1 creates the potential for protein-protein interactions and nearby, lies a consensus sequence (SYDE) reported to control the pleiotropic protein kinase CK2. METHODS Electrophysiology, immunofluorescence and biochemistry applied to CFTR-expressing cells, Xenopus oocytes, pancreatic ducts and patient biopsies. RESULTS Irrespective of PKA activation, CK2 inhibition (ducts, oocytes, cells) attenuates CFTR-dependent Cl(-) transport, closing wtCFTR in cell-attached membrane patches. CK2 and wtCFTR co-precipitate and CK2 co-localized with wtCFTR (but not DeltaF508-CFTR) in apical membranes of human airway biopsies. Comparing wild-type and DeltaF508CFTR expressing oocytes, only DeltaF508-CFTR Cl(-) currents were insensitive to two CK2 inhibitors. Furthermore, wtCFTR was inhibited by injecting a peptide mimicking the F508 region, whereas the DeltaF508-equivalent peptide had no effect. CONCLUSIONS CK2 controls wtCFTR, but not DeltaF508-CFTR. Others find that peptides from the F508 region of NBD1 allosterically control CK2, acting through F508. Hence, disruption of CK2-CFTR interaction by DeltaF508-CFTR might disrupt multiple, membrane-associated, CK2-dependent pathways, creating a new molecular disease paradigm for deleted F508 in CFTR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulation of Protein Kinase CK2 Activity by Fragments of CFTR Encompassing F508 May Reflect Functional Links with Cystic Fibrosis Pathogenesis†

Deletion of F508 in the first nucleotide binding domain (NBD1) of cystic fibrosis transmembrane conductance regulator protein (CFTR) is the commonest cause of cystic fibrosis (CF). Functional interactions between CFTR and CK2, a highly pleiotropic protein kinase, have been recently described which are perturbed by the F508 deletion. Here we show that both NBD1 wild type and NBD1 DeltaF508 are p...

متن کامل

Regulation of CFTR chloride channel trafficking by Nedd4-2: role of SGK1

Introduction: The cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl−) channel is an essential component of epithelial Cl− transport systems in many organs. CFTR is mainly expressed in the lung and other tissues, such as testis, duodenum, trachea and kidney. The ubiquitin ligase neural precursor cells expressed developmentally down-regulated protein 4-2 (Nedd4-2...

متن کامل

Antihypertensive 1,4-dihydropyridines as correctors of the cystic fibrosis transmembrane conductance regulator channel gating defect caused by cystic fibrosis mutations.

Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel gene. CF mutations like deltaF508 cause both a mistrafficking of the protein and a gating defect. Other mutations, like G551D, cause only a gating defect. Our aim was to find chemical compounds able to stimulate the activity of CFTR mutant proteins by screening a library con...

متن کامل

Syntaxin 6 and CAL Mediate the Degradation of the Cystic Fibrosis Transmembrane Conductance Regulator

The PDZ domain-containing protein CAL mediates lysosomal trafficking and degradation of CFTR. Here we demonstrate the involvement of a CAL-binding SNARE protein syntaxin 6 (STX6) in this process. Overexpression of STX6, which colocalizes and coimmunoprecipitates with CAL, dramatically reduces the steady-state level and stability of CFTR. Conversely, overexpression of a STX6 dominant-negative mu...

متن کامل

Diffusional mobility of the cystic fibrosis transmembrane conductance regulator mutant, delta F508-CFTR, in the endoplasmic reticulum measured by photobleaching of GFP-CFTR chimeras.

Mutations in the cystic fibrosis transmembrane conductance regulator protein (CFTR) cause cystic fibrosis. The most common disease-causing mutation, DeltaF508, is retained in the endoplasmic reticulum (ER) and is unable to function as a plasma membrane chloride channel. To investigate whether the ER retention of DeltaF508-CFTR is caused by immobilization and/or aggregation, we have measured the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology

دوره 24 5-6  شماره 

صفحات  -

تاریخ انتشار 2009